财经知识的学习和应用需要注重资产配置能力的提升。投资者们需要根据自身的风险偏好和投资目标,合理配置不同类型的资产,以实现长期的投资回报。艾尚财经将带你了解忆阻器概念股600596资金流向,希望你可以从中得到收获并且得到一个满意的答案。

忆阻器的发展过程

忆阻器的发展过程

HP 关于忆阻器的发现在 2008 年时发表于「自然」期刊,2009 年证明了 CrossLatch 的系统很容易就能堆栈,形成立体的内存。技术每个电线间的「开关」大约是 3nm x 3nm 大,开关切换的时间小于0.1ns,整体的运作已和 DRAM, 但是开关次数还不如DRAM-- 还不足以取代 DRAM,但是靠着 1 cm² 100 gigabit(GB), 1cm³ 1 petabit(数据存储单位1PB=1000TB)(别忘了它是可以堆栈的)的惊人潜在容量,干掉闪存是绰绰有余的。

但是 Crossbar Latch 可不止用来储存数据而已。它的网格状设计,和每个交叉点间都有开关,意味着整组网格在某些程度上是可以逻辑化的。在原始的 Crossbar Latch 论文中就已经提到了如何用网格来模拟 AND、OR 和 NOT 三大逻辑闸,几个网格的组合甚至可以做出加法之类的运算。这为摆脱晶体管进到下一个世代开了一扇窗,很多人认为忆阻器电脑相对于晶体管的跃进,和晶体管相对于真空管的跃进是一样大的。另一方面,也有人在讨论电路自己实时调整自己的状态来符合运算需求的可能性。这点,再搭配上忆阻器的记忆能力,代表着运算电路和记忆电路将可同时共存,而且随需要调整。这已经完全超出了这一代电脑的设计逻辑,可以朝这条路发展下去的话,或许代表着新一代的智慧机器人的诞生。

忆阻器和 Crossbar Latch 的组合代表的是电脑科技的全新进展,或许能让我们再一次延续摩尔定律的生命,朝向被机器人统治的未来前进。

惠普实验室的研究人员认为RRAM就是Chua所说的忆阻器,其报道的基于TiO2的RRAM器件在2008年5月1日的《自然》期刊上发表。加州大学伯克利分校教授蔡少棠,1971年发表《忆阻器:下落不明的电路元件》论文,提供了忆阻器的原始理论架构,推测电路有天然的记忆能力,即使电力中断亦然。惠普实验室的论文则以《寻获下落不明的忆阻器》为标题,呼应前人的主张。蔡少棠接受电话访问时表示,当年他提出论文后,数十年来不曾继续钻研,所以当惠普实验室人员几个月前和他联系时,他吃了一惊。

RRAM可使手机将来使用数周或更久而不需充电;使个人电脑开机后立即启动;笔记型电脑在电池耗尽之后很久仍记忆上次使用的信息。忆阻器也将挑战掌上电子装置内普遍使用的闪存,因为它具有关闭电源后仍记忆数据的能力。RRAM将比今日的闪存更快记忆信息,消耗更少电力,占用更少空间。忆阻器跟人脑运作方式颇为类似,惠普说或许有天,电脑系统能利用忆阻器,像人类那样将某种模式(patterns)记忆与关联。

RRAM为制造非易失性存储设备、即开型PC、更高能效的计算机和类似人类大脑方式处理与联系信息的模拟式计算机等铺平了道路,未来甚至可能会通过大大提高晶体管所能达到的功能密度,对电子科学的发展历程产生重大影响。

研究人员表示,忆阻器器件的最有趣特征是它可以记忆流经它的电荷数量。蔡教授原先的想法是:忆阻器的电阻取决于多少电荷经过了这个器件。也就是说,让电荷以一个方向流过,电阻会增加;如果让电荷以反向流动,电阻就会减小。简单地说,这种器件在任一时刻的电阻是时间的函数———或多少电荷向前或向后经过了它。这一简单想法的被证实,将对计算及计算机科学产生深远的影响。 比勒菲尔德大学托马斯博士及其同事在2012年就制作出了一种具有学习能力的忆阻器。2013年,安迪·托马斯利用这种忆阻器作为人工大脑的关键部件,他的研究结果将发表在《物理学学报D辑:应用物理学》杂志上。

安迪·托马斯解释说,因为忆阻器与突触的这种相似性,使其成为制造人工大脑——从而打造出新一代的电脑——的绝佳材料,“它使我们得以建造极为节能、耐用,同时能够自学的处理器。”托马斯的文章总结了自己的实验结果,并借鉴其他生物学和物理学研究的成果,首次阐述了这种仿神经系统的电脑如何将自然现象转化为技术系统,及其中应该遵循的几个原则。这些原则包括,忆阻器应像突触一样,“注意”到之前的电子脉冲;而且只有当刺激脉冲超过一定的量时,神经元才会做出反应,忆阻器也是如此。

忆阻器能够持续增高或减弱电阻。托马斯解释道:“这也是人工大脑进行学习和遗忘的过程中,忆阻器如何发挥作用的基础。”

芯片技术发展前景如何?

芯片技术是现代数字化社会的关键基础设施之一,对于各个行业的发展都具有重要作用。以下是芯片技术发展前景的一些方面:

1. 人工智能和机器学习:随着人工智能和机器学习的普及和应用,对于高性能芯片需求的增加。芯片技术的发展将支持更多智能设备和系统,提供强大的计算和运算能力,进一步推动人工智能和机器学习技术的发展。

2. 5G和物联网:随着5G技术的商用化,物联网的规模和覆盖范围将持续扩大,需要更高效和高性能的芯片来支持大规模的设备连接和数据处理。芯片技术的发展将推动5G和物联网的快速发展,进一步改善通信和连接的、稳定性和效率。

3. 自动驾驶和智能交通:随着自动驾驶和智能交通系统的发展,需要更高性能和低延迟的芯片来支持实时感知、决策和控制。芯片技术的进步将提供更强大的计算和图像处理能力,为自动驾驶和智能交通提供更可靠和高效的解决方案。

4. 新能源和环境保护:新能源技术和环境保护对于芯片技术的需求也在增加。例如,用于太阳能和风能转换的芯片,以及用于环境监测和控制的芯片等。芯片技术的发展将支持更高效和可持续的能源利用,以及更精细和精确的环境保护。

5. 生物技术和医疗保健:芯片技术在生物技术和医疗保健领域也有广泛应用。例如,用于基因测序、生物传感和医疗诊断的芯片等。芯片技术的发展将提供更高精度和更快速的生物信息处理和健康监测,为医疗保健和生物技术的进步提供支持。

总体而言,芯片技术将在数字化时代持续发展,为各个行业带来创新和变革。随着技术的不断进步和应用的扩大,芯片技术有望进一步提供更高性能、更低功耗、更小尺寸和更高可靠性的解决方案。因此,芯片技术的前景非常乐观,将在各个领域发挥越来越重要的作用。

二o_五年国家重点项目包含哪些

国家重点基础研究发展计划和重大科学研究计划

2015年度项目申报指南

重要支持方向

农业科学领域

1.光合作用分子机制与作物高光效品种选育

针对提高作物光合作用效率的需求,以主要粮食作物与禾本科C4植物为材料,着重研究光合作用体系高效利用光能的分子机理、光合产物分配与运输的调控机理、C3与C4植物碳代谢与光呼吸的调节机理、C4植物特殊解剖结构形成的分子基础,获得光能利用效率显著提高的主要粮食作物新材料新品系,为农作物高光效遗传改良及育种实践提供理论指导和技术方法。

2.重要经济作物油菜或薯类的遗传改良

以油菜或薯类(马铃薯和甘薯)为材料,开展重要经济作物高产优质性状的培育研究。研究影响油菜高油分性状的关键基因及其调控网络、光合产物与油分积累的关系、环境和生育期对油分积累的影响,为油菜高油分育种与生产提供理论指导;研究马铃薯和甘薯高产、抗病、抗旱等性状相关的关键基因,阐明块茎和块根发育、淀粉合成与积累的调控机制,为马铃薯和甘薯高产优质多抗品种的设计育种提供科学指导。

3.重要农业动物扩繁与健康养殖研究

针对家畜良种扩繁和健康养殖的需求,从绵羊和山羊的不同品种资源、生理及遗传调控等途径入手,系统研究其生殖生物学特性,提出提高绵羊和山羊繁殖力的理论和措施;针对危害家畜生产的寄生虫疾病,研究其发病机制和传播途径,并提出有效的防控措施。

4.高产作物群体结构与气候、土壤等生态因子的匹配原理与调控机制

针对作物高产群体结构的形成和资源高效利用,重点研究:作物群体结构与功能和气候、土壤等生态因子的匹配原理与调控机制;高产高效作物生产体系地上群体与地下根系、根际微生物及土壤养分水分条件的互作机制与调控途径;高产农田土壤微生物区系的特征和演变规律;研究我国粮食主产区未来大面积高产高效的限制因子,为提升我国农田生产力提出可行措施和政策建议。

5.新型农业微生物制剂的基础研究

针对农业微生物制剂品种优化、换代升级的需求,开展农业微生物群体感应的基础研究,阐明新型微生物通讯系统的信号构成及传导途径,设计高效微生物制剂;进一步阐明微生物生防制剂合成与生态调控机制。为设计高效、速效、持效和多功能微生物制剂提供科学依据。

6.重要造林树种或竹子速生优质抗逆品系培育的生物学基础(C类)

针对主要造林树种或竹子,重点其研究生长周期调控及速生性状的遗传基础,以及适应和抵抗不良环境的分子机制;研究造林树种优良性状的固定及超级品系的品种化繁育途径,建立规模化繁育的方法和技术。

7.家禽或重要水产品种的可持续养殖研究(C类)

针对集约化的家禽和水产养殖可持续发展的需求,系统研究家禽氮磷吸收与沉积的调控原理,提出饲料氮磷高效利用的有效途径,建立家禽养殖高效、节粮和清洁生产的新模式;以1-2种重要的水产品种为对象,综合研究在可控水体内养殖的营养需求、病害防治、环境效应和产品安全等关键方面的生物学问题,提出相关品种养殖的标准化模式,为进一步拓展自然水体的可持续养殖提供基础。

8.人工草地功能调控研究(C类)

针对发展优质高效人工草地、提高我国草地畜牧业综合生产力的需求,重点研究人工草地的地带性分布格局和空间配置设计、人工草地生产力形成机理与调控途径、牧草生产与家畜饲养的关联系统集成与生产带耦合,为国家制定人工草地发展战略提供重要科学依据。

能源科学领域

1.低渗透与致密油气开发渗流理论和提高采收率新方法

针对低渗透与致密油气高效开发和提高采收率的重大需求,研究低渗基质-裂缝系统等复杂储层精细表征和预测新方法,发展非线性渗流理论,建立低渗透与致密油气藏高效开发的理论基础,研究提高低渗透与致密油气藏采收率新方法,发展提高采收率的新技术。

2.电压源型高压多端直流输电设备和系统

针对电压源型高压多端直流输电,研究系统的数学模型、仿真方法和控制规律;研究高压直流变换器新型拓扑结构,多变换器相互作用机理及与系统间的相互影响规律;研究不同拓扑结构高压直流断路器中短路电流的限制与开断机理。

3.新型高性能二次电池研究

重点支持金属锂等轻元素化合物的多电子反应体系理论和新型、高效电池储能研究,重点突破涉及离子传导膜材料和高效、安全的电解质材料、高性能催化材料的可控制备以及纳米碳结构电极材料,构建新型高容量二次电池新体系,为实现新型电池安全和工业化应用提供科学支撑。

4.海洋深水油气安全高效钻完井工程理论及方法

针对南海深水安全高效钻完井重大工程问题,研究海洋深水钻井地质灾害机理和预测模型,海底井口-隔水管-平台-海洋环境复杂载荷耦合动力学及安全控制原理,低温高压条件下井壁稳定和井筒压力控制机理等,建立完善海洋深水安全高效钻完井工程理论并发展相关先进方法。

5.规模储能和储热过程的基础研究(C类)

针对压缩气体储能,研究超临界气体的流动传热特性和过程耦合的能量传递与损失特性,研究高负荷压缩机和膨胀机内部流场结构,以及系统调试和优化算法;针对高效储热材料、单元及系统,研究储热材料性能的对流与流固耦合传热机理,解决中高温储热材料高效储、释热特性及多尺度多相传热机理。

6.典型过程工业优化和节能(C类)

以典型过程工业为研究对象,实现基于模拟的过程优化设计、调控、放大与强化,研究过程耦合,实现能量多级利用,提高能源利用效率并降低环境影响;针对过程工业节能中的无机膜高效分离技术,着重研究材料微结构控制方法、成膜机制和膜分离机理,建立高效膜材料和大型膜组件设计和集成的理论基础。

7.能源动力系统高效清洁利用的科学问题研究

围绕燃煤发电系统的能量转换效率,研究能源动力系统提高能效新理论与新方法;研究在过程设备、系统流程、热力循环等不同层面高效利用的新思路;研究高参数发电系统中高效热功转换的关键科学问题和高参数发电系统中燃料的高效燃烧及污染物控制机理;研究太阳能等可再生能源与化石能源互补发电的新方法。

8.我国西部生态脆弱区煤炭科学规模开发与水资源保护(C类)

围绕大规模煤炭开采对我国西部干旱-半干旱地区的生态环境,特别是水资源的重大影响,研究煤炭大规模机械化开采方式下,煤岩层结构与地应力场及地下水系统的动态变化规律和耦合关系,建立我国西部煤炭科学规模开采的新理论。

信息科学领域

1. 网络通信与计算的协同理论与方法

面对移动互联网、信息-物理融合系统(Cyber-Physical System)和大数据的应用及通信瓶颈的矛盾,研究通信能力与计算能力的协同机制、物理与认知的融合理论、异构组网和路由算法,研究适应业务时空分布多样性和基于虚拟化的多种资源按需调控方法,提出计算通信协作模型及可获得的网络增益上限,并完成实验验证。

2. 高级人机交互的计算理论及实验研究

研究脑机的计算与交互,包括视觉、听觉、触觉等感知的计算与交互、情感的计算与交互、动作计算与交互、人体参数的测量与认知,研究有关的理论模型、传感器件、传输方法、数据处理算法并开展实验验证。

3. 图像与视频数据的高效表示与处理

面向网络图像与视频数据的存储、管理与处理,研究基于人类视觉机理的视觉计算模型;探索网络环境下大规模图像与视频数据高效的表示、编码、传输、分析、理解、处030600.net理的新理论和新方法。面向一个重要应用领域,研究现实场境和虚拟景观混合呈现的理论、方法与高效算法。

4. 具有重要应用前景的原创性新型信息器件研究

开展纳米分辨力快速光学成像器件与技术研究,研究突破衍射极限、近场矢量光束调控、快速信号转换与探测、动态信息获取与表征等科学问题;研究可延展柔性无机电子器件的设计理论、转印实现及界面机理;开展新型存储器件和雪崩光电二极管(APD)单光子探测器件研究,研究忆阻器件的物理机制、新材料体系与器件结构,研究提高光存储密度和寿命的新机制。

5. 新型生化微传感器系统研究

针对持久性有机污染物和某些重金属痕量污染物检测重大需求,研究新型生化微传感器集成自治系统,主要研究难降解生化污染物的新型敏感机理、痕量生化物质富集机理与预处理方法、低维纳米催化反应机理与方法、敏感材料自更新机理与方法和多传感单元集成自治等科学问题,实现对痕量生化污染物的快速、在线、自动监测。

6. 基于开源代码的软件开发的原理与方法(C)

围绕发展软件服务业的国家需求,研究基于开源代码的软件开发的原理与方法;探索基于群体智慧的软件开发与维护的模型与方法;分析开源社区形成和发展的规律;探讨基于开源代码的软件安全缺陷的发现与修复的机理;研究基于开源代码的软件运行状态的感知机制及保证服务质量的方法;构建基于开源代码的软件开发及运行的实验平台。

7. 城市大数据的计算理论和方法 (C类)

面向公共安全领域以及智能城市的实际需求,研究空间信息数据、社会网络数据等的协同表示,研究面向信息空间、物理世界和人类社会三元空间的协同感知与群智认知理论,提出视觉计算模型,建立深度计算模型,研究三元空间虚拟交互与智能控制新的模式,适应社会管理、智能城市和工业化生产等方面应用需求。

8. 深空环境下的信息传输理论 (C类)

面向未来深空通信和探测的需求,研究深空网络编码理论,探索星际尺度时空强约束条件下信息传输能力的动态边界,研究空间多维稀疏资源的联合优化利用,提出星际通信技术体制与体系结构,分析关键问题,建立实验模型。

资源环境科学领域

1.中国特提斯域若干典型区(带)复合成矿系统及其深部驱动机制

选择我国特提斯构造-成矿域内若干典型区(带),重点研究复合成矿系统的形成演化规律,及其对国家金属矿产成矿的控制,研究若干代表性的复合成矿系统演化过程与金属超常富集机制,研究复合成矿系统形成的构造叠加与转换过程,探索可能的深部驱动机制,从理论上提高对国家矿种、特别是其大型-超大型矿床找矿勘查的预见性和目的性。

2.山地水土要素时空耦合过程、效应及其调控

研究我国典型山地水土要素时空耦合过程及其资源与生态效应,分析多尺度水土资源时空匹配的承载能力阈值;阐明山区生产、生活、生态可持续性国土空间开发格局、强度与调控原理;评估变化环境下水土作用失衡的山地脆弱性与区域灾害风险,阐释我国山区人地系统协调发展机制。

3.热带气旋精细化测报理论和技术与灾害风险评估研究

开展登陆热带气旋精细化结构的野外观测试验,研究登陆热带气旋精细化结构的多源资料分析理论和方法,探讨环境场对登陆热带气旋内中尺度系统发生发展及演变的影响,研究登陆热带气旋风雨分布的高分辨率数值预报关键技术,开展登陆热带气旋灾害影响预评估、影响评估和风险管理研究。

4.人类活动对海湾生态环境的影响

研究高强度人类活动影响下海湾生态环境的演变过程与机理、对海湾生态系统结构与服务功能的影响,探讨海湾生态环境修复的科学依据及实行生态补偿机制的可行性,为生态系统水平的海湾综合管理提供科学依据。

5.中国北方砂岩型铀矿的形成机理与潜力评价

厘定中国北方砂岩型铀矿成铀盆地的区域构造与动力学背景;充分利用各行业深部钻孔资料,研究不同类型成铀盆地构造和沉积相系、赋矿砂体形成的古沉积和古气候环境;研究盆地内铀的富集区,对比含矿地质体与不含矿地质体的差异,恢复含矿流体源、运、储的形成演化过程;建立砂岩型铀矿的成矿模型与找矿模型,预测找矿勘查区及新矿产地,评价中国北方砂岩型铀矿的资源潜力。

6.新型持久性有机污染物(POPs)的区域特征、健康风险与控制(C类)

通过区域尺度POPs远距离迁移与归宿研究,认识新型POPs的运移与演变规律;鉴定和识别对我国和全球环境具有潜在影响的污染物,推动我国POPs国际公约的超前研究;探讨新型POPs的分子毒理效应与健康影响机制,科学评估我国POPs暴露水平与风险;研究主要工业生产过程中POPs的生成与释放机理,发展并提出防控对策与技术。

7.延伸期天气预报理论与方法研究(C类)

研发适用于我国延伸期天气预报统计模式,建立先进的延伸期动力统计预报系统,分析影响我国降水季节内振荡的物理过程,研究厄尔尼诺与南方涛动(ENSO)、季节内振荡和天气尺度运动的多尺度相互作用,分析触发热带麦登-朱利安震荡(MJO)对流活动的关键前期信号及可预报性,研究热带-中高纬相互作用过程及海-气、陆-气相互作用对季节内振荡的影响。

8.近海环境变化对海洋生物的影响及其资源效应(C类)

研究近海环境变化压力下我国重要渔业资源早期生活史生境的变迁特征、对补充过程的影响与机制、渔业种群对这些变化的适应性响应,为保护、修复渔业种群早期生活史关键栖息地提供科学依据。

健康科学领域

1. 环境因素引发呼吸道损伤的病理生理学机理与干预研究

研究大气细颗粒(含PM2.5)等环境因素引发呼吸道损伤的病理生理学机理,通过细胞、动物模型、患者表型与基因组变化的整合分析,系统解析其分子机制,遴选作为候选药物靶点的重要调控分子,为干预新策略提供依据。

2. 精神活性物质成瘾记忆的形成和消除

开展精神活性物质成瘾记忆相关神经元和神经环路研究,揭示成瘾记忆形成、保持、提取和强化的分子基础与信号通路,研究针对成瘾记忆的药物新靶点和前体化合物,探索选择性消除成瘾记忆的策略和手段,提高干预复吸的有效率。

3. 代谢综合征的分子营养学机理研究

研究营养、代谢稳态失衡与代谢综合征发生发展的关系,揭示特定营养、基因与代谢通路改变促发代谢稳态失调的机理,阐明营养感应与细胞应激调控网络在代谢稳态异常中的作用,提出代谢综合征的早期防治措施。

4. 老年骨骼相关疾病的发病机制及诊疗的基础研究(C类)

结合临床与流行病学的工作基础,研究骨质疏松、退行性骨关节病等老年骨骼相关疾病的发病机理,阐明骨骼发育、衰老和稳态保持的分子机制,为预防与诊疗老年骨骼相关疾病的新策略奠定理论基础。

5.炎-癌生物信号在肿瘤发生发展和肿瘤治疗中作用的研究

围绕炎-癌相互作用信号的研究,阐明肿瘤细胞死亡的方式对天然免疫细胞抑癌或促癌作用的影响,探讨免疫炎症细胞抗癌机能重塑的方法和机制;研究炎症反应与药物敏感性、抗药性产生的关系,为肿瘤治疗提供新的思路。

6.恶性肿瘤癌前病变和侵袭的早期分子事件研究

以1至2种恶性肿瘤为对象,研究癌前病变和肿瘤侵袭前期的早期分子事件,发现肿瘤诊疗新标志物,提出阻遏癌前病变和肿瘤侵袭的有效手段,提高肿瘤诊疗水平。

7.免疫细胞亚群在慢性炎症疾病中的调节与致病机理以及靶向治疗的基础研究(C类)

结合免疫细胞亚群产生与维持的工作基础,研究细胞亚群(如T细胞、B细胞或树突状细胞亚群)对炎症与免疫疾病的调节作用以及致病机理,提出靶向治疗的新思路新策略。

8. 器官移植免疫耐受研究(C类)

以1种重要脏器的移植为对象,研究免疫耐受发生的细胞分子机制,寻找免疫耐受标志物,探索器官移植免疫耐受诱导的新方案,降低植后器官的慢性免疫排斥、患者的机会感染或肿瘤发生,提高长期生存率。

中医理论专题

1. 基于临床的气血相关理论研究

基于脏象,研究气为血帅、血为气母的理论基础,阐明气虚血瘀、气滞血瘀、气不摄血的形成过程和机理,揭示临床有效病证气血论治的疗效机理。

2. 基于临床的灸法作用机理研究

以灸法临床疗效确切的病证为载体,系统揭示灸材、灸法作用的特点和生物学基础,阐明影响灸效的关键影响因素,比较研究艾灸与针刺作用的异同。

利用现代成像技术等手段,探索经络研究新方法,为研究中医经络的科学内涵奠定基础。

重要传染病基础研究专题

1.重要病原细菌关键生物学特性的进化机制

以肠杆菌科、分枝杆菌属和不动杆菌属等重要病原菌为研究对象,研究其关键生物特性,如致病性、自然生存与传播性、耐药性等的进化机制,为这些病原菌所致疾病的防治奠定基础。

2.慢性丙型病毒性肝炎免疫逃逸与免疫病理

研究丙型肝炎病毒(HCV)中国主要流行株感染、复制等病毒学特征和宿主细胞调控规律,阐述HCV不同流行毒株应答抗病毒治疗的异同性;分析自限性感染和持续性感染的免疫反应特征,阐述天然免疫识别与应答的信号机制,HCV建立持续性感染的免疫逃逸规律,以及丙型肝炎病理进展和糖脂代谢紊乱等主要肝外疾病机制,为针对HCV中国主要流行株的抗病毒药物、疫苗研制奠定理论基础。

材料科学领域

1.高储能密度无机电介质材料的关键问题

针对国家重大工程用能量存储器件对无机电介质材料及电容器的需求,研究电介质材料组分、微纳结构、异质界面对电极化、电荷存储及转移的影响规律,研究超高储能密度电容器电介质材料在高场下的介电性能变化及调控原理,探索提高电介质能量密度和容量的新机制,研究大容量超高储能密度电容器的制备科学、集成技术和服役特性。

2.高性能橡胶材料研究

围绕汽车轮胎用橡胶材料的高性能化,以小型汽车为重点,研究其分子设计和可控合成,以及其链结构、聚集态结构、橡胶复合体系的多层次多尺度结构对材料性能的影响规律,提高轮胎耐磨性,降低磨耗和微粒排放,改善滚动阻力、抗湿滑等服役性能。

3.高速重载轨道交通轮轨系统金属材料研究

研究高速、重载轨道交通在运营环境下轮轨系统轮辋金属材料约束致脆、高应变、疲劳伤损、动态衰退等导致安全性恶化和影响寿命周期的科学问题,发展新一代轮轨材料原型,建立轮轨金属材料服役评价体系。

4.新型功能材料显微组织和性能的原子尺度观测与表征(C类)

发展具有亚埃分辨的成像、皮米精度的位移测量、原子的元素分辨等先进表征手段,研究新型多铁材料的极化微区、畴和畴壁、晶界和相界等显微组织的晶体学特性、原子构型、电子结构、磁结构等特性和它们之间的耦合及在外场作用下的演变,阐明其与材料性能的关系。

5.高效率、低成本有机高分子发光材料研究

针对大尺寸、柔性和低成本加工为特征的有机显示器件,研究面向溶液加工工艺的蓝光、绿光、红光材料等高效率有机高分子发光材料和相关匹配材料的分子设计、能级调控与可控制备,探索新一代低成本有机发光材料的新理论和新结构,提出低成本全印刷显示屏和高性能柔性显示屏制作的新工艺与新途径。

6.严酷环境条件下混凝土材料与结构性能研究

研究在海洋与西部严酷环境下混凝土材料与结构的性能退化机理,长寿命混凝土材料微结构形成规律与性能优化,为重大基础工程安全服役与耐久性设计提供科学基础。

7.轻质热防护材料结构与性能演变规律(C类)

针对未来新型飞行器的发展需求,研究可重复使用轻质热防护材料设计及实现方法,揭示材料微观结构与性能关系,阐明服役过程中材料的演变规律,建立轻质热防护材料可重复使用的性能评价体系。

8.面向应用的高性能水处理膜设计与制备(C类)

以海水淡化等水处理膜高性能化和批量制备均匀化为研究目标,研究树脂分子结构和聚集态结构对纳米级孔的形成及调控机制,膜的缺陷形成及其控制原理,膜的批量制备均匀性和服役稳定性的影响规律,为全面提升我国水处理膜水平奠定科学基础。

制造与工程科学领域

如今的电子技术发展方向如何

经历了惨重的产业衰退,好不容易感受到景气复苏的科技厂商们,该是重新振作投入创新研发的时候了…但2010年什么会红?该把钱砸在哪里才不会变冤大头?以下是EETimes美国版所选出的、值得特别注意的十项新兴技术。

虽然软件看来也将在2010年扮演要角,不过以下选出的十大潜力新兴技术主要是硬件方面的,且特别看重其在省电、降低二氧化碳排放量、精简材料等方面的条件(这些条件也可说是推动那些技术的主要力量);至于那些已经是主流话题、或是还需要长期发展的技术项目则未考虑在内。

当然,这十项由编辑们选出的技术(排列顺序并无特别规则),也许不是百分之百准确成为2010年的明星,但它们对整个产业的影响力还是值得关注;如果读者们有其他的看法与预测,欢迎一起讨论!

1. 对电子装置的生物回馈(biofeedback)与思想控制

有不少企业或研究机构都展示过如何利用装置在头盔或是耳机上的传感器来撷取脑波,并用以控制计算机系统。这类技术主要应用在医疗——让重度身障人士能进行沟通或是控制环境——以及军事领域,也越来越常用以做为消费性电子装置与计算机游戏的控制接口。

听起来也许有点像科幻小说,但藉由思想控制(thought-control)的人机接口已经存在了,例如一家总部位于美国旧金山的公司Emotiv Systems,就正在推广这种技术。

2. 印刷电子

能快速印刷出多个导体/绝缘体或半导体层以形成电路的技术,可望催生比目前采用传统制程生产之IC成本更低芯片。通常印刷半导体意味着使用性能与硅大不相同 的有机材料,甚至所生产之组件尺寸也能超越硅材料的极限。此外还有许多应用获益于低价、软性基板的性能;例如RFID标签,还有显示器的主动矩阵背板 (active-matrix backplane)。

有一家美国厂商Kovio则是专精印刷式硅电子组件技术,该公司自2001年成立以来就深耕印刷电子市场,并在2009年7月宣布获得2,000万美元资金,将把这笔钱用于将该公司的RF条形码推向商业化量产。

3. 塑料内存

塑胶内存也可能适合以印刷制程来生产,并像上面的印刷电子组件一样,能比硅材料有更好的性能表现、成本也更低。挪威业者Thin Film Electronics就是这种技术的专家之一,该公司多年来致力将该技术商业化,并曾与大厂英特尔(Intel)合作过一段时间。

塑胶内存是以具铁电(ferroelectric)特性的聚合物Polythiophenes为基础,可重复读写、非挥发性;根据Thin Film Electronics介绍,其资料保存期限可超过十年,读写周期超过百万次。在2009年9月,一家德国公司PolyIC还使用塑料内存技术,以聚乙 烯对苯二甲酸酯(Polyethylene Terephthalate,PET)做为基板,用滚动条是制程生产出20bit的塑料内存。

4. 无光罩微影

大多数人可能会问,超紫外光微影(extreme ultra violet lithography,EUV)究竟何时可取代浸润式微影技术?但现在有匹大黑马跳出来——即采用电子束(electron beam)技术为基础的无光罩微影(Maskless lithography)。

荷兰业者Mapper Lithography则是该技术的主要推手。2009年7月,Mapper提供了12吋晶圆用电子束微影平台给法国的研究机构CEA-Leti,让晶圆代工大厂台积电(TSMC)在该处进行相关制程研发。

5.并行处理技术

这种技术已经以双核心/四核心PC处理器的形式存在,还有嵌入式领域应用的多核心异质处理器(multicore heterogeneous processors);不过到目前为止,对于多核心处理器如何编程,以及如何充分发挥其运算能力与功率效益,业界还是少有形式上的理解。

自从多核心处理器问世以来,上述问题一直是困扰IT领域与整个产业界,而且我们距离解决方案还有好一段距离;目前OpenCL、Cuba等计划都是试图有所突破的行动,在2010年可望看到更多的进展。

6. 能量采集

能量采集(energy harvesting)并不是一个新题目,例如自动表(motion-powered wristwatch)就已经存在多年;但当电路的功率消耗量从毫瓦(milliwatts)缩小到微瓦(microwatts,千分之一毫瓦)等级,有 趣的事情就发生了…启动电路可能再也不需要电线或是电池,而可以透过各种环境现象,而这种技术可能会带来深远的影响。

最初的振动供电(vibration-powered)无线传感器应用之一,是装置在汽车机械中;这种无电池传感器应用的主要考虑,就是免除了维护的需要。有家 德国公司EnOcean则专长于无电池无线开关技术,可应用在住宅自动化领域;该公司并正在推动相关技术的标准化工作。

手机大厂Nokia也正在观察手机用能量采集技术的可能性,不过目前还没有任何原型产品;而到2010年,所有的行动设备业者将不得不关注能量采集技术,或者是至少得好好思考一下如何延长产品的电池续航力。

7. 生物电子与人脑研究

在2010年,研究阶段的进展似乎多过于开发阶段,但生物学与电子学的结合技术,已经成熟到可以应用。我们已经对那些植入动物体内的硬件组件习以为常,像是 宠物芯片等注射到动物皮下的电子卷标,或是人类应用的心律调整器;而想要在提升医疗照护质量同时,又能降低相关费用的需求也是越来越急迫。

产业界在微机电系统(MEMS)、有机电子组件制造等方面技术的进展,改善了活体组织与电子电路的整合程度。实验室单芯片(Lab-on-a-chip)就 是相关技术的展现之一,IBM最近也发表了该类芯片样品;未来甚至也有可能在可电子寻址的基板上培育生物细胞。实现生物体外诊断的可能性已经很确定。

这类技术的主要目标,是探索个别细胞的电气特性信息与它们对药物的反应,以进行心脏与神经方面的疾病,如阿兹海默症(老人失智症)、帕金森氏症等方面的研究。所以短期之内,我们可预期将有更多生物电子学技术跃上台面。

8. 电阻式内存/忆阻器

业界对通用内存的追寻仍在持续;这种内存需要像DRAM那样简单,甚至最好能像是那些电容器。此外理想的内存要能在断电情况下仍能保存数据数年,使用 循环周期至少要达百万次等级;这类内存最好使用传统的制造方法就能轻松生产,使用的材料也别超出传统晶圆厂可负担的范围…

但遗憾的是我们迄今尚未发现梦幻内存…是这样吗?

2009年,在导电金属氧化物(conductive metal oxide,CMOx)技术领域默默耕耘七年的Unity Semiconductor终于熬出头;其他也有内存相关技术进展的新兴业者还包括4DS、Qs Semiconductor与Adesto Technologies。

我们也看到许多较大规模的IDM厂积极进军电阻式内存(RRAM),还有忆阻器(memristor)技术的发展。相关信息可参考:全新忆阻器改写电路理论 RRAM可望成为杀手级应用?

9. 直通硅晶穿孔

在先进硅芯片表面最上方的导线堆栈(interconnect stack)深度,可以达到很深且非常精细的程度;而我们认为这样的趋势将导致芯片前段(front-end)制程分成不同阶段,甚至可能分别再不同的晶圆厂进行。

这种将多层裸晶堆栈在单一封装内部的需求,需要更细致的导线;而直通硅晶穿孔技术(through-silicon-via,TSV)能完全穿透硅晶圆或裸 晶,是制造3D芯片的重要关键。

Austriamicrosystems公司已在2009年五月开始生产TSV组件,锁定供应将CMOS芯片与传感器组件 等进行3D整合的客户;类似的组件在2010年将会有更多。

10. 五花八门的电池技术

已经非常成熟的电池技术无法像是依循着摩尔定律(Moore"s law)的IC那样,继续在能量密度上有所进展;但无可讳言,虽然我们希望电池能储存更多的电能,那也有可能带来其他的安全性风险。

各种可携式电子设备都需要电池来供电,诉求环保的电动车若是少了电池也不再有未来;最近在镍氢、锂电池化学成分的研究上有一些最新发展,有家ReVolt公司则开发出可充电的锌空气(zinc-air)电池。预期在2010年将会诞生更多具备智能功能的新颖电池技术。

现在有哪些新产品 未来有普及的可能?

看了你的问题我给你找了相关信息! 对电子装置的生物回馈(biofeedback)与思想控制 大量企业和研究机构实施的研究均表明,利用安装在头顶或耳机上的传感器,脑波可以被用于控制电脑系统。这类技术目前主要应用于医疗(让重度残障人士能进行沟通或控制外部环境)及军事领域,也越来越多地用在消费电子产品与电脑游戏的控制界面。这或许听上去有点像科幻小说中的场景,但通过思维控制的人机界面现已存在,像总部设在美国加利福尼亚州旧金山的Emotiv Systems Inc。这样的公司就在积极推广这种技术。 2.印刷电子 如果可以快速印刷出多个导体层、绝缘层或半导体层以形成电子电路,那么相比于传统制造工艺,采用这种技术生产的集成电路成本会更低。通常情况下,印刷半导体意味着要使用性能与硅截然不同的有机材料,甚至还要用到比在硅材料中获得的更大的几何极限。此外,还有许多应用将受益于低价软性基板的优良性能,如RFID标签,用于显示器的主动矩阵背板(active-matrixbackplane)。印刷硅电子产品领域的先驱Kovio公司自2001 年创立以来,便一直在不断改善印刷电子技术,并在2009年7月宣布成功融资2000万美元。该公司表示,他们计划将这笔钱投入到公司的RF条形码批量生产中。 3.塑料内存 塑料内存与印刷电子技术存在着某种联系,因为可能需要印刷技术进行生产。相比于硅材料,塑料内存的性能更佳,成本也更低。这个领域的先驱是总部设在挪威奥斯陆的Thin Film Electronics公司。该公司多年来致力将该技术进行商业化,与芯片制造商英特尔合作过一段时间。塑料内存是基于聚噻吩 (polythiophene),这是一个具有铁电特性的聚合物家族。据Thin Film Electronics介绍,塑料内存可重复读写,是非挥发性材料,资料保存期限超过十年,读写周期超过一百万次。2009年9月,德国PolyIC GmbH & Co.KG公司通过这项技术,将聚对苯二甲酸乙二醇酯(polyethylene terephthalate)作为基板,开发出一个20位的内存。 4.无光罩微影 对于很多人来说,有关半导体微影的主要问题是,超紫外光微影何时取代浸润式微影技术?在这场竞争中跑出了匹“黑马”,即无光罩微影 (Masklesslithography)。这种技术以电子束为基础,总部设在荷兰代夫特的Mapper Lithography公司正在大力推动该技术的发展。2009年7月,Mapper向法国格拉诺布尔的研究机构CEA-Leti提供了一个300毫米电子束微影平台,供台湾集成电路制造股份有限公司(简称台积电)从事相关研究。台积电是世界微影技术的重要研究机构,之所以对Mapper公司的技术感兴趣,是希望在同对手的竞争中占得先机。 5.并行处理技术 并行处理技术已经以双核和四核个人电脑处理器以及用于嵌入应用的多核异质处理器的形式存在。不过,业界迄今仍对多核处理器如何编程,以及如何充分发挥其运算能力与功率效率知之甚少。自多核处理器问世以来,这便是信息技术的核心问题之一,困扰着整个业界,至今仍未得到完全解决。目前,OpenCL、Cuba等倡议向我们描绘了美好的前景,提出了将图形处理器用作通用处理器以及现场可编程门阵列(FPGA)和软件可编程处理器阵列的前景。我们期待着多核处理器在2010年获得更大的突破。 6.能量采集 能量采集并非全新创意,多年前就有人发明了由运动产生能量的手表。但是,当电子电路的消耗从毫瓦减至微瓦时,一个有趣的现象就发生了。为那些电路提供能量也许不需要电网或电池,而是通过周围各种现象。专家估计,这种技术将带来深远影响。能量采集技术的一个早期应用是在机械装置和车辆上广泛使用通过振动提供能量的无线传感器。由于不再需要电池,这种传感器也就没有了维护的必要。 德国EnOcean GmbH公司长期以来一直在积极推动无电池的无线开关技术在住宅自动化领域的应用,现正帮助EnOcean 联盟制定这方面的标准。全球第一大手机制造商诺基亚也在时刻关注能量采集技术在手机领域的进展情况。不过,该公司强调目前还没有任何原型产品。然而,在 2010年,所有移动设备生产商将必须寻求通过能量采集提升设备质量,至少是提高电池使用寿命。 7.生物电子与人脑研究 在2010年,研究阶段的工作可能会多于开发阶段,但是,生物技术与电子技术的结合已经足够成熟,可以进行开发利用。在此之前,科学家已将硬件植入动物体内,比如植入皮肤下面的动物身份标签,或是供人类患者使用的心脏起搏器,当前降低医疗养护方面的成本正变得急迫起来。由于整个行业在微机电系统 (MEMS)、有机电子组件制造等技术方面的进步,组织与电子电路的整合范围得以改善。 芯片实验室(Lab-on-a-chip)就是这项技术取得进步的典型例证,最新例证则来自于IBM的,该公司最近推出了此类产品的原型。不仅如此,我们还有可能在电子寻址基板上培育生物细胞。实现生物体外诊断的可能性已经确定。有关个别细胞的电行为信息及其对药物的反应,是心脏与神经方面疾病研究领域的重要焦点,比如阿尔茨海默病(老年痴呆症)、帕金森氏综合症。简而言之,我们认为生物电子技术的大量研究和进步仍旧是推动这项技术发展的主流趋势。 8.电阻式内存/忆阻器 研究人员对“万能内存”的追寻仍在持续。这种内存必须像DRAM那样简单,当然,最好是能像那些电容器一样简单。此外,它们还必须要能在断电情况下仍能将数据保存数年之久,还能使用数百万次。这类内存最好使用传统方法就能轻易生产,使用的材料最好也别超出传统晶片生产商所能可承受的范围。但是,迄今为止我们尚未发现“万能内存”。难道我们真的不能了吗?看到下面这个例子,你或许就有了答案。在导电金属氧化物技术领域默默耕耘7年之久的Unity Semiconductor Corp。公司在2009年推出了他们的研究成果。 事实上,《EE Times》早在2006年便对这家默默无闻的公司进行过报道。另外,4DS、Qs Semiconductor与Adesto Technologies等公司同样在今年取得了不小的进步。我们还看到许多较大规模的IDM厂商也在加大对电阻式内存(RRAM)方面的投入。值得一提的还有忆阻器技术的发展,因为在电阻特性方面展现出存储效应的两个终端设备,是对惠普实验室倡导的忆阻器理论基础的实践应用。忆阻器常常被认为是继电阻器、电容器和电感器之后的第四个无源电器元件。 9.直通硅晶穿孔 先进硅芯片表面最上方的互连堆叠(interconnect stack)很深,而且会随最低几何限度有显著的差异。我们一直认为这可能会导致芯片前段(front-end)制造分成不同表面和互连(紧随更高的互连堆叠),甚至可能在不同的芯片制造商存在。出于市场营销和技术方面的原因,这种将多裸晶(multiple die)堆叠在一个包装内的渴望还需要更复杂的互连;而直通硅晶穿孔技术(through-silicon-vi)能完全穿透硅晶片或裸晶,是制造3D包装的关键。2009年5月,Austriamicrosystems公司开始在工厂生产TSV组件,客户群体是将CMOS集成电路与传感器组件等进行3D 整合的厂商。这样的组件在2010年估计会有更多。 10.花样翻新的电池技术 我们现在已经完全适应了摩尔定律和微电子产品小型化的趋势,于是很容易对任何性能无法每隔两年就大大增强的技术倍感失望。但是,电池技术已相对成熟,不像集成电路一样受同一力量的驱动。事实上,如果能量存储过于密集,会变成十分危险的事情。尽管如此,我们越来越依赖于电池去储存能量,为各种各样的电子装置供电。毋庸置疑,如果电子技术不能进一步取得突破,环保的电动车注定不会再有未来,汽车和可持续发展环保技术的结合也是一句空话。 我们面临的压力可想而知。近年来,以镍和锂为原料(如锂铁磷酸盐)的电池研究取得了一定进展,有望取代值得尊敬但问题多多的碱性锰干电池。从事可充电式锌空气(zinc-air)电池开发的公司ReVolt已将俄勒冈州波特兰市作为其在美国的总部和生产基地。我们估计在2010年会有更多具备智能功能的电池问世,为开发能量可控的集成电路提供机遇。(

忆阻器工作原理

忆阻器的工作原理是基于材料的记忆效应。

忆阻器,也被称为可变电阻器或电子记忆元件,是一种基于材料的记忆效应工作的器件。它的工作原理是通过控制电流和电场来改变材料的电阻值。忆阻器的工作原理可以简单描述为:当电流通过忆阻器时,材料内部的电荷会在晶格之间移动,形成一种特殊的电荷分布。这种分布会导致材料的电阻值发生变化。

忆阻器的工作原理基于材料的记忆效应,是一种新型的电子器件。相比传统的电阻器,忆阻器具有更高的存储密度、更低的功耗和更快的响应。因此,它在存储器、逻辑电路和神经网络等领域具有广阔的应用前景。忆阻器作为一种新型的电子器件,正逐渐在各个领域展示出巨大的潜力和应用价值。

忆阻器的发展过程

忆阻器,又称为记忆电阻器或变阻器,是一种具有记忆功能的电子元件。它的发展过程可以追溯到20世纪60年代。随着技术的进步,研究人员开始尝试制造可控的忆阻器。在1971年,成功地制造出了第一款忆阻器。他们使用了一种特殊的半导体材料,并通过改变电流的方向来控制忆阻器的状态。

在接下来的几十年里,忆阻器的研究逐渐深入。研究人员发现,不同材料的忆阻器表现出不同的特性。例如,某些材料的忆阻器可以在电流中断后仍保持状态,而另一些材料的忆阻器可以在电压改变时改变其阻值。随着忆阻器技术的进一步发展,它在存储器、人工智能等领域的应用逐渐增加。

通过上文,我们已经深刻的认识了忆阻器概念股600596资金流向,并知道它的解决措施,以后遇到类似的问题,我们就不会惊慌失措了。如果你还需要更多的信息了解,可以看看艾尚财经的其他内容。